a2 United States Patent

Natori

US009298522B2

US 9,298,522 B2
Mar. 29, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD OF DATA COMMUNICATION
BETWEEN APPLICATION PROGRAM AND
PRINTER DRIVER, AND PROGRAM

THEREFOR
(75) Inventor: Hideo Natori, Hino (JP)
(73) Assignee: CANON KABUSHIKI KAISHA,
Tokyo (JP)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1115 days.
(21) Appl. No.: 12/620,937
(22) Filed: Nov. 18, 2009
(65) Prior Publication Data
US 2010/0149586 Al Jun. 17, 2010
(30) Foreign Application Priority Data
Dec. 11,2008 (JP) ceeeenevreeinreereencnnen 2008-316274

(51) Int.CL

GO6F 9/54 (2006.01)
GO6F 3/12 (2006.01)
(52) US.CL
CPCcccee. GO6F 9/544 (2013.01); GO6F 3/1204
(2013.01); GOGF 3/1224 (2013.01); GO6F
3/1284 (2013.01)
(58) Field of Classification Search

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,867,633 A 2/1999 Taylor, Il etal. 395/109
5,898,422 A * 4/1999 Zetts 715/856
5,964,843 A * 10/1999 Eisleretal. ... 719/323
6,367,036 B1* 4/2002 Hansen GOG6F 11/348
710/310
7434,233 B2 10/2008 Kotanicccocevvrennee. 719/329
2006/0197968 Al* 9/2006 VanNostrand 358/1.13
2007/0013926 Al* 12007 Miyata 358/1.9
2007/0024874 Al* 2/2007 Kawamurac......... 358/1.2
FOREIGN PATENT DOCUMENTS
Jp 10-248014 A 9/1998
Jp 2004-288013 A 10/2004
Jp 2005-050307 A 2/2005
Jp 2005-258712 A 9/2005

* cited by examiner

Primary Examiner — Mohammad Ghayour

Assistant Examiner — Lennin Rodriguezgonzalez

(74) Attorney, Agent, or Firm — Fitzpatrick, Cella, Harper &
Scinto

57 ABSTRACT

An information processing apparatus and method. The appa-
ratus comprises a generation unit configured to generate a
named shared memory that can be accessed by both an appli-
cation which runs with a first bit number and a printer driver
which runs with a second bit number different from the first
bit number. A storing unit is configured to store information in
the named shared memory generated by the generation unit,
and an acquisition unit is configured to acquire the informa-
tion stored by the storing unit from the named shared memory
generated by the generation unit. The storing unit is executed
by the printer driver, and the acquisition unit is executed by
the application.

25 Claims, 10 Drawing Sheets

START PROCESSING

FOR ACQUISITION OF VENDOR-SPECIFIC
INFORMATION BY APPLICATION PROGRAM

DECIDE NAME OF NAMED SHARED MEMORY
AND CREATE NAMED SHARED MEMORY
T

5801

|>-3903

L]

STORE TYPE OF VENDQR-SPECIFIC INFORMATION TO BE

ORMATION OF NAMED SHARED MEMO!
IN ARGUMENT AND CALL ExtEscape FUNCTION
BY VENDOR-SPECIFIC Escape CODE

ACQUIRED IN NAMED SHARED MEMORY, DESIGNATE NAME
INFOR MORY

8905
2

IGNORE RETURN VALUE OF ExtEscape
FUNCTION AND REFER TO GENERATION-RESULT
INFORMATICN STORED IN NAMED SHARED MEMORY

5909

HAS GENERATION OF
VENDOR-SPECIFIC INFORMATION
SUCCEEDED?

|>\8911

ACQUIRE VENDOR-SPECIFIC INFORMATION
STORED IN NAMED SHARED MEMORY

[~S807

5913

| DELETE NAMED SHARED MEMORY

HAS
ALL VENDOR-SPECIFIC
INFORMATION DESIRED TC BE ACQUIRED BEEN
ACQUIRED
?

|-s915

US 9,298,522 B2

Sheet 1 of 10

Mar. 29, 2016

U.S. Patent

Ocl A0IA3A ONILNIHd
00l
oclt H/ w
@ SNLYHYddY DNISS3O0Hd V1vV{d
v~ o4l [0~ NdO | 60k~ WVd | g0~ WOH
—~
gLt
eLL~+ 0dd LLE ™ OQH 901~ Odd 0L~ OaM 201~ 014D
ctl~ add | ot~ ddH | oL~ Od oL~ N L0} 1d0
\ \

U.S. Patent Mar. 29, 2016 Sheet 2 of 10 US 9,298,522 B2

ADDRESS SPACE OF APPLICATION PROGRAM PROCESS
VENDOR-SPECIFIC
API'PROVIDING MODULE || 211
APPLICATION >
PROGRAM VENDOR-SPECIFIC
< API FUNCTION
2 /
\ \

201 213

U.S. Patent Mar. 29, 2016 Sheet 3 of 10 US 9,298,522 B2

ACCEPTS
RETURN DATA
/
APPLICATION PROGRAM 201
~~S311 ‘,\/331 6
Y
PRINT SUPPORT FEATURE OF OS 301
ExtEscape FUNCTION
_S312 | _s313 5314 | _ga45
Y Y
311+ USER INTERFACE MODULE RENDERING MODULE }~_321
/DerocumentEvent FUNCTION| [DrvEscape FUNCTION,|
7/ N\
NOTIFIED OF RETURN DATA OF
Escape EVENT
ExtEscape FUNCTION
ExtEscape
FUNCTION FAILURE
/
APPLICATION PROGRAM 201
_S321 326
Y
PRINT SUPPORT FEATURE OF OS L 301
ExtEscape FUNCTION
_S322 | _s303 8324 | ga0s
Y Y
331 USER INTERFACE MODULE OF MXDC 341
XPS PRINTER DRIVER DrvE FUNCTION
DrvDocumentEvent FUNCTION | | PTV=Scape FURL |
/ N\
CANNOT GENERATE
NOTIFIED OF VENDOR-SPECIFIC INFORMATION,
Escape EVENT WHICH IS RETURN DATA OF
ExtEscape FUNCTION

US 9,298,522 B2

Sheet 4 of 10

Mar. 29, 2016

U.S. Patent

NOILONNS 8deas3ixg
“ 40 V.L¥a NdNL3Y S| HOIHM
NOILYWHOANI D141D3dS-HOANIA

AHOWSN d34VHS d4AVN NI
NOILVIWHOSNI SIHL S3HOLS ANY "LNIAS odeos3 40
@3141LON NIHM ‘NOILONN 8deds3ix3 40 v1va NdN13Y

J1VHINTD LONNYD | | STHOIHM ‘NOILYWHOINI D14103dS-HOANIA STLYHIANTD
N 7
NOILONNS 1UaAZIUAWNI0GAI]
NOILONN4 adeas3nig HIAIIA HIALNIH SdX ee
LpE~ DaXW 40 IINAONW JOV4HALNI H3SN
I I 1401729
I ! AHOWIN aIHYHS
Loe~ NOILONN4 8deasTixg Q3INYN
SO 40 FHNLY3d 1HOddNS INIHd
F607S w
wovm\(: 20vS ™ L0V
e, NYHOOHd NOLLYOIddY | ors
AHONAN A3HVHS
QINYN WOY4 ¥1v¥a NENL3Y >¢o_>m_>_@ﬁ_uwﬁmo@ubua
S3HINDIV ANY NOILONNA e
8020533 40 IHNTIV4 STHOND NOILONN4 90E9SIXI STIVD

v 'Old

U.S. Patent Mar. 29, 2016 Sheet 5 of 10 US 9,298,522 B2

FIG. 5

APPLICATION
USER INTERFACE PROGRAN 201
A1~ MODULE

\
T > PRINT SUPPORT
FEATURE OF OS
~_ 301
GDI
+ -1
421 MXDC

501

SPOOL FILE
(XPS FORMAT)

y

PRINT PIPELINE 511
SERVICEOFOS [

Y
FILTER PIPELINE ~521

LAYOUT FILTER }—~{ 523

RENDERING FILTER [—~}—525

i

PRINTING DEVICE | 190

~__—

US 9,298,522 B2

Sheet 6 of 10

Mar. 29, 2016

U.S. Patent

/19 G1L9 €19 LLO
A A A A
{ (((
d13H S1INv43a TAONYD MO
NOISNILX3
HlM G w.m J0INNOWY | €29
ONILNIHd SS31H3aH0d [T 129
XI[] SONILLAS INIHd SS3743aH0d
{
109

U.S. Patent Mar. 29, 2016 Sheet 7 of 10 US 9,298,522 B2

APPLICATION | |PRINT SUPPORT MXDC USER INTER-
PROGRAM FEATURE OF OS FACE MODULE

201 { { {
301 421 411

701
¢

DECIDE NAME OF NAMED
SHARED MEMORY AND
CREATE NAMED
SHARED MEMORY

1

STORE TYPE OF VENDOR-SPECIFIC
INFORMATION TO BE ACQUIRED

IN NAMED SHARED MEMORY.
DESIGNATE NAME INFORMATION OF
NAMED SHARED MEMORY IN ARGUMENT
AND CALL ExtEscape FUNCTION BY
VENDOR-SPECIFIC Escape CODE

702 703 Drv[?:oL(J:'l\Jerr:]_?ln(t)Elvent 207
CALL ExtEscape
FUNCTION R ? =t ¢

705 IN CASE OF Escape EVENT AND VENDOR-SPECIFIC
Escape CODE, ACQUIRE NAME OF NAMED

SHARED MEMORY AND ACCESS NAMED SHARED
MEMORY. READ OUT TYPE OF VENDOR-

SPECIFIC INFORMATION, GENERATE VENDOR-
SPECIFIC INFORMATICN IN ACCORDANCE THEREWITH
AND STCRE IN NAMED SHARED MEMORY TOGETHER

VATH GENERATION-RESULT INFORMATION
DrvEscape o ’y

FUNCTION
N

711
N : 709

SINCE CONTENT OF
VENDOR-SPECIFIC Escape CODE
IS UNKNOWN, DrvEscape
FUNCTION RETURNS FAILURE

OF PROCESSING
RETURN ExtEscape ¢
719 FUNCTION | 0 713
% T 715
IGNORE RETURN VALUE OF \
ExtEscape FUNCTION AND REFER
TO GENERATION-BESULT 717

INFORMATION STORED IN NAMED
SHARED MEMORY. IF GENERATION
SUCCEEDS, ACCESS ENDOR-
SPECIFIC INFORMATION STORED
IN NAMED SHARED MEMORY.

1
|_DELETE NAMED SHARED MEMORY [~ 721

FIG. 7

U.S. Patent Mar. 29, 2016 Sheet 8 of 10 US 9,298,522 B2

FIG. 8
831

SIZE ~A_ 811
SIGNATURE ~_ 813
INPUT DATA OFFSET ~_ 815
INPUT DATA SIZE A 817
OUTPUT DATA OFFSET ~_ 819
OUTPUT DATA SIZE ~A_ 821

GENERATION-RESULT INFORMATION o 823

INPUT DATA ~_ 831

OUTPUT DATA T 841

UNUSED AREA I 851

U.S. Patent Mar. 29, 2016 Sheet 9 of 10 US 9,298,522 B2

FIG. 9

START PROCESSING
FOR ACQUISITION OF VENDOR-SPECIFIC S901
INFORMATION BY APPLICATION PROGRAM

y

DECIDE NAME OF NAMED SHARED MEMORY L _S903
AND CREATE NAMED SHARED MEMORY

_—
-l

Y

STORE TYPE OF VENDOR-SPECIFIC INFORMATION TO BE
ACQUIRED IN NAMED SHARED MEMORY. DESIGNATE NAME | S905
INFORMATION OF NAMED SHARED MEMORY I~
IN ARGUMENT AND CALL ExtEscape FUNCTION
BY VENDOR-SPECIFIC Escape CODE

\

IGNORE RETURN VALUE OF ExtEscape
FUNCTION AND REFER TO GENERATION-RESULT [~S907
INFORMATION STORED IN NAMED SHARED MEMORY

S909

HAS GENERATION OF
VENDOR-SPECIFIC INFORMATION
SUCCEEDED?

ACQUIRE VENDOR-SPECIFIC INFORMATION L _S911
STORED IN NAMED SHARED MEMORY

i

S913
HAS

ALL VENDOR-SPECIFIC

INFORMATION DESIRED TO BE ACQUIRED BEEN

ACQUIRED
?

NO

YES

DELETE NAMED SHARED MEMORY ~S915

y

(END)

U.S. Patent Mar. 29, 2016 Sheet 10 of 10 US 9,298,522 B2

FIG. 10

START PROCESSING OF S1001
DrvDocumentEvent FUNCTION

S1003

Escape EVENT? NO

EXECUTE PROCESSING
CONFORMING
TO EACH EVENT

VENDOR-SPECIFIC Escape CODE?

ACQUIRE NAME OF NAMED
SHARED MEMORY AND READ OUT TYPE OF [51007
VENDOR-SPECIFIC INFORMATION FROM
NAMED SHARED MEMORY.
GENERATE VENDOR-SPECIFIC
INFORMATION IN ACCORDANCE
THEREWITH AND STORE IN NAMED SHARED
MEMORY TOGETHER WITH GENERATION-
RESULT INFORMATION

y

(END)~S1009

US 9,298,522 B2

1

METHOD OF DATA COMMUNICATION
BETWEEN APPLICATION PROGRAM AND
PRINTER DRIVER, AND PROGRAM
THEREFOR

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method and program for
communication of data between an application program,
which calls an API (Application Programming Interface) sup-
plied by an operating system, and a printer driver called by the
operating system.

2. Description of the Related Art

An application program for printing acquires various print-
ing-related information via an API generally provided by an
operating system (“OS” below) and notifies of print settings.

The application program calls the function of the OS-
provided APl in order to acquire the capabilities of the printer.
The OS queries a printer driver regarding the capabilities of
the printer and returns the acquired capabilities information
to the application program. The application program utilizes
the returned printer capabilities information to decide the
print settings used when printing is performed. The applica-
tion program then calls the OS-provided API to thereby notify
the OS and printer driver of the print settings.

By way of example, the type of paper that can be handled
depends upon printer capabilities. Accordingly, the applica-
tion program acquires a list of paper types that can be handled
by the printer performing the printing. The types of paper
usable in printing are designated by the user or application
program. In a case where the user is allowed to make the
designation, the application program displays the acquired
list of paper types on a display screen and the user is allowed
to select the type of paper used in printing. A collection of
selected values of setting items selected by the user in order to
be used at the time of printing is referred to as the print
settings. The OS or printer driver can be notified ofthese print
settings in response to the application program calling the
API provided by the OS. In addition to type of paper, other
examples of ordinary setting items that can be mentioned are
paper size and method of feed, double-sided printing, printing
orientation and number of copies, etc.

In the case of the Windows (registered trademark) operat-
ing system from Microsoft, information relating to ordinary
setting items such as the type of paper that can be handled by
a printer can be acquired via an API referred to as a “Device-
Capabilities function”. By calling the function for every
information category of setting item as in a list of paper type
1Ds, the application program can acquire a list of setting
values on a per-category basis. Further, the information con-
cerning the print settings used in printing can be reported
from the application program to the OS or printer driver by
calling an API referred to as a “Create DC function” or “Reset
DC function™.

On the other hand, information relating to printer-specific
features often cannot be acquired with a default API function
provided by the OS. For example, with borderless printing
used frequently in the printing of photographs, the amount of
protrusion or “extension” beyond the size of the paper gen-
erally can be designated because it is required that the image
be printed in an area larger than the paper size. The reason for
this is an assumption that the user may set the paper in the
printer in a skewed manner or that the paper will become
skewed during its transport through the printer even if the
paper has been set correctly. Accordingly, the set value of
amount of extension in borderless printing differs depending

10

15

20

25

30

35

40

45

50

55

60

65

2

upon the printer and although there are printers that enable the
amount of extension to be set to large, medium and small
values, there are also printers that only allow the amount of
extension to be set to a small value. Information that cannot be
acquired with an OS-provided default API function as in the
manner of amount of extension in borderless printing will be
referred to below as “vender-specific information”.

In order that an application program may acquire vendor-
specific information in Windows, there is a method of utiliz-
ing a vendor-specific API provided by a module of the printer
driver. There is also a method in which the application pro-
gram acquires vendor-specific information from a printer
driver by utilizing an API referred to as an “ExtEscape func-
tion” provided by the OS.

A method of utilizing a vendor-specific API will be
described first. The vendor-specific API is provided by a
module constituting the printer driver. There are instances
where the module is referred to as a “printer-driver SDK
module”. The application program first specifies the printer-
driver SDK module. Next, the application program calls a
LoadLibrary function, thereby loading the printer-driver
SDK module into the address space of the process of the
application program. The application program then calls the
function of the vendor-specific API, which is provided by the
printer-driver SDK module, whereby it can acquire the ven-
dor-specific information (e.g., see the specification of Japa-
nese Patent Laid-Open No. 2004-288013).

A method using the ExtEscape function will be described
next. The ExtEscape function is an API provided by the OS
and is used in order to transfer unique data between an appli-
cation program and a printer driver. For example, the ExtEs-
cape function is used when the application program deter-
mines whether the printer driver is equipped with an interface
for executing its own image processing (e.g., see the specifi-
cation of Japanese Patent Laid-Open No. 10-248014).

Since there are printers of many types and capabilities
differ from one type to another, a printer driver is required for
every type of OS. In the case of Windows, a large number of
printer drivers are bundled with the OS product. Even if a
printer driver is not bundled with the OS product, the OS is
designed so that the appropriate printer driver is downloaded
from Microsoft automatically via a network. Thus, with Win-
dows, an environment is provided in which a large variety of
printers print. Windows includes both a 32-bit version of the
OS and a 64-bit version of the OS. Since a printer driver
operates in close relation with the OS, a printer driver bundled
with the 32-bit Windows product is a 32-bit printer driver and
a printer driver bundled with the 64-bit Windows product is a
64-bit printer driver. The same holds true of printer drivers
downloaded automatically. A 64-bit printer driver is down-
loaded in the case of the 64-bit version of the OS, and a 32-bit
printer driver is downloaded in the case of the 32-bit version
of the OS.

Further, there are two types of printer drivers that operate
with Windows, namely a GDI printer driver and an XPS
printer driver. GDI stands for “Graphics Device Interface”.
This is a program, supplied by Windows, for allowing the
application program to instruct graphic rendering that is inde-
pendent of the output device. A characterizing feature of the
GDI driver is that a rendering module of the printer driver
interprets the rendering instruction of the application pro-
gram implemented via the GDI and executes print processing.

On the other hand, one of the features of an XPS printer
driver which can be mentioned is that the format of device-
independent print data stored in a spool file is the XPS format.
XPS stands for XML Paper Specification and is one open-
standard electronic document format provided by Microsoft.

US 9,298,522 B2

3

The rendering instruction of the application program imple-
mented via GDI is stored in a spool file upon being converted
to XPS by an MXDC (Microsoft XPS Document Converter)
provided by Microsoft. A rendering filter of the XPS printer
driver interprets the XPS so that printing is executed. Here the
MXDC ofthe XPS printer driver corresponds to the rendering
module of the GDI printer driver.

FIG. 2 is an example of a schematic view illustrating the
relationship between an application program 201 and a
printer driver in a method utilizing a vender-specific API. Ina
case where the application program 201 utilizes a vendor-
specific API function 213, the program loads a vendor-spe-
cific API providing module 211 into address space 203 of the
application program process, as mentioned earlier. Initially,
therefore, it is required that the application program 201
specify the module name of the vendor-specific API provid-
ing module 211. For example, by calling a GetPrinterDriver
function, which is an OS-provided API, the application pro-
gram 201 can acquire the file names of a user interface mod-
ule and rendering module from among the modules consti-
tuting the printer driver. Owing to the fact that the user
interface module or rendering module includes a vendor-
specific API function 213, the application program 201 is
capable of specifying the module name of the vendor-specific
API providing module 211. Further, in a case where a vendor-
specific API is provided by a module other than a user inter-
face module or rendering module, it may be so arranged that
the module name of the vendor-specific API providing mod-
ule 211 is specified using an ExtEscape function, described
later. After the vendor-specific API providing module 211 is
loaded into address space 203 of the application program
process, the application program 201 acquires the address of
the vendor-specific API function 213 and calls this function.

FIG. 3A is an example of a schematic view illustrating the
operation of the ExtEscape function, which is an OS-pro-
vided API. By utilizing the ExtEscape function, the applica-
tion program 201 and printer driver are capable of passing
vendor-specific information. A print support feature 301 of
the OS is a feature provided by the OS. Through the print
support feature 301, the OS executes processing of the API
function called by the application program 201 and calls the
printer driver as necessary. A user interface module 311 and a
rendering module 321 are included in a group of modules
constituting the printer driver. The user interface module 311
has a feature for allowing the user to configure various items
relating to printing and for creating print settings based upon
indications from the user. The rendering module 321 has a
feature for converting a rendering instruction of the applica-
tion program 201, which has been accepted via a GDI, to an
image or for converting it to page description language.

The application program 201 designates a vendor-specific
Escape code (S311) as the argument of the ExtEscape func-
tion in order to obtain the desired vendor-specific information
as in the form of a list of amounts of extension in borderless
printing, by way of example. At the same time, data necessary
for Escape processing, described later, is passed as the argu-
ment of the ExtEscape function. When the application pro-
gram 201 calls the ExtEscape function, the print support
feature 301 of the OS calls a DrvDocumentEvent function of
the user interface module 311 of'the printer driver (S312). The
DrvDocumentEvent function is capable of referring to the
argument when the ExtEscape function is called by the appli-
cation program 201. When notification of the Escape event is
given and processing of the DrvDocumentEvent function
ends (S313), the print support feature 301 allows the OS to
call a DrvEscape function (S314) of the rendering module
321 in the printer driver. The DrvEscape function is capable

25

35

40

45

55

4

of referring to the argument when the application program
201 calls the ExtEscape function. The DrvEscape function
executes processing conforming to the argument and gener-
ates return data of the ExtEscape function. Here the return
data is arranged to include the vendor-specific information.
The return data generated by the DrvEscape function is
returned to the application program 201 via the print support
feature 301 of the OS (S315 and S316).

In a case where a 32-bit application program in the 32-bit
version of Windows or a 64-bit application program in the
64-bit version of Windows has called the ExtEscape function,
the printer driver generally operates in a process the same as
that of the application program. On the other hand, in a case
where the 32-bit application program in the 64-bit version of
Windows has called the ExtHEscape function, a 64-bit printer
driver operates in a 64-bit process that is different from the
32-bit process of the application program.

SUMMARY OF THE INVENTION

However, in a case where vendor-specific information is
returned from a printer driver to an application program by
the conventional methods, the problems set forth below arise.

First, a problem which arises with the XPS printer driver is
that return data of the ExtHEscape function cannot be gener-
ated. FIG. 3B is an example of a schematic view illustrating
the operation of the ExtHEscape function in an XPS printer
driver. The application program 201 designates a vendor-
specific Escape code and calls the ExtEscape function in
order to acquire vendor-specific information (S321). Initially
the print support feature 301 of the OS calls the DrvDocu-
mentEvent function of a user interface module 331 in the XPS
printer driver (S322). After notification of the Escape event is
given and processing of the interface module 331 ends
(S323), the print support feature 301 of the OS calls a DrvEs-
cape function (S324) of an MXDC 341. Since the MXDC 341
has been provided by Microsoft, as described above, the
vendor-specific Escape code is processed as an unknown
Escape code. Accordingly, since the ExtEscape function can-
not generate return data with respect to the vendor-specific
code, the problem which arises is that the application program
201 cannot acquire vendor-specific information (S325 and
S326).

Next, the problem with a printer driver bundled with the
64-bit version of the Windows product is that a vendor-spe-
cific API cannot be supplied to a 32-bit application program.
According to the Windows specifications, a 64-bit module
cannot be loaded into the address space of the process of a
32-bit application program. With the 64-bit version of Win-
dows, a 64-bit printer driver is required but both a 32-bit
application program and a 64-bit application program will
operate. Accordingly, in order for a 64-bit printer driver to
supply a vendor-specific API to a 32-bit application program
that operates on the 64-bit version of Windows, it is required
that the modules constituting the 64-bit printer driver include
at least one 32-bit module. However, since the printer driver
bundled with the 64-bit version of Windows is a 64-bit printer
driver, as set forth above, no 32-bit module is included.
Accordingly, with the 64-bit printer driver bundled with the
64-bit version of Windows, a problem which arises is that the
vendor-specific API cannot be supplied to the 32-bit applica-
tion program.

In addition, in a case where a printer driver is bundled with
the Windows product, a problem which arises is that with the
user interface module and rendering module, a vendor-spe-
cific API cannot be provided. The reason for this is that the
user interface module and rendering module capable of being

US 9,298,522 B2

5

acquired by a GetPrinterDriver function are modules pro-
duced by Microsoft; an another-company-specific API can-
not be provided. Furthermore, in a case where an XPS printer
driver is bundled with the Windows product, return data of the
ExtEscape function cannot be generated, as mentioned
above, and therefore the problem which arises is that the
application program cannot specity a vendor-specific API
providing module.

Accordingly, the present invention has been devised in
view of the foregoing problems and provides a method of data
communication between an application program and a printer
driver which operate in an operating system, wherein the data
communication method does not use a vendor-specific API
and is not dependent upon a rendering module.

According to one aspect of the present invention, there is
provided a method of communicating data between an appli-
cation program unit and a printer driver unit which operate in
an operating system, comprising: a step of the application
program unit generating a named object and notifying the
printer driver unit of at least name information, which is for
accessing the named object, via an API provided by the oper-
ating system; a step of the printer driver unit referring to the
named object based upon the name information and generat-
ing return data from information obtained as well as genera-
tion-result information indicating whether generation of the
return data succeeded or failed; a step of the printer driver unit
storing the return data and the generation-result information
in the named object; a step of the application program unit
referring to the generation-result information; and a step of
the application program unit referring to the return data,
which has been stored in the named object, based upon the
generation-result information.

In accordance with the present invention, a printer driver
stores the vendor-specific information in a named object and
an application program refers to the information contained in
the named object, whereby the application program is capable
of executing processing without a limitation being imposed
by the specifications of an OS-provided API.

Furthermore, since the application program utilizes a
named shared memory and an ExtEscape function, it is pos-
sible for both an event processing unit of a user interface
module and an Escape processing unit of a rendering module
to store vendor-specific information in the named shared
memory. As a result, since processing by the user interface
module becomes possible, the vendor-specific information
can be returned to the application program even by an XPS
printer driver.

Furthermore, by using the named object, vendor-specific
information can be returned to the application program even
in a case where an application program and printer driver
having different operating conditions operate as separate pro-
cesses.

Furthermore, a printer driver bundled with the 64-bit ver-
sion of Windows is capable of returning vendor-specific
information to a 32-bit application program.

Further, since the printer driver operates only when the
application program calls the APL it is unnecessary for a
program for providing vendor-specific information to be
made to wait as a service or separate process.

Further features of the present invention will become
apparent from the following description of exemplary
embodiments with reference to the attached drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating the configuration of a
printing system;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 2 is a schematic view illustrating the relationship
between an application program and a printer driver in a
method utilizing a vender-specific API;

FIG. 3A is aschematic view useful in describing the flow of
conventional processing when an application program calls
an ExtEscape function;

FIG. 3B is a schematic view useful in describing the flow of
conventional processing when an application program calls
an ExtEscape function;

FIG. 4 is a schematic view useful in describing the flow of
processing according to the present invention when an appli-
cation program calls an ExtEscape function;

FIG. 5 is a schematic view useful in describing the con-
figuration of an XPS printer driver and a printing operation;

FIG. 6 is an example of display of a borderless settings
dialog for configuring printing related to borderless printing;

FIG. 7 is a timing chart of acquisition of vendor-specific
information and of function invocation using a named shared
memory and an ExtEscape function;

FIG. 8 is a schematic view illustrating the structure of data
stored in a named shared memory;

FIG. 9 is a flowchart of processing by which an application
program acquires vendor-specific information; and

FIG. 10 is a flowchart of processing of a DrvDocument-
Event function.

DESCRIPTION OF THE EMBODIMENTS

The embodiments of the present invention will be
described below in detail with reference to the accompanying
drawings. It should be noted that the embodiments set forth
below do not limit the present invention described in the
scope of the claims, and all combinations of features
described in the embodiments are not necessarily essential in
the present invention.

First Embodiment

First, reference will be had to FIG. 5 to describe the con-
figuration of an XPS printer driver and a printing operation
according to this embodiment. Further, a hardware configu-
ration to which this embodiment is applicable will be
described later with reference to FIG. 1.

<Operation of XPS Printer Driver at Time of Printing>

FIG. 5 is a block diagram useful in describing the flow of
data in a case where an XPS printer driver has operated when
an application program in an operating system executes print
processing. The modules constituting the XPS printer driver
in FIG. 5 are a user interface module 411, an MSDC 421, a
layout filter 523 and a rendering filter 525.

By calling the user interface module 411 from the applica-
tion program 201 via the print support feature 301 of the OS,
the user is allowed to make various settings relating to print-
ing.

If printing is instructed from the application program 201
by user operation, the content of this instruction is sent to the
print support feature 301 of the OS. Specifically, DC (Device
Context), which is a virtual print area, is created by a GDI and
the DC is supplied to the application program 201. Docu-
ment-data drawing processing is executed with respect to the
DC by the application program 201. The drawing content is
converted to the XPS format by the MSDC 421, as a result of
which XPS-formatted print data is generated. The XPS-for-
matted print data is spooled temporarily in a storage device as
a spool file 501 on a per-job basis by the print support feature
301 of the OS.

US 9,298,522 B2

7

The description will be premised on the fact that the appli-
cation program 201 causes the GDI to perform drawing. In the
case of an application program that is capable of creating an
XPS-formatted electronic document, on the other hand, it is
possible for created XPS-formatted print data to be spooled
without relying upon a GDI and MSDC 421.

The data that has been stored in the spool file 501 is sup-
plied to a filter pipeline 521 called by a print pipeline service
511 of the OS. The filter pipeline 521 is composed of any
number of filters described in a pipeline configuration file of
the XPS printer driver (not shown). In a case where a print
command that can be interpreted by a printing device 120
does not existin the XPS format, at least a filter for converting
the spooled XPS-formatted data to a print command in a
format that can be interpreted by the printing device is
required. In FIG. 5, the filter pipeline 521 is constituted by the
layout filter 523 and rendering filter 525. The layout filter 523
acquires the XPS-formatted print data from the spool file and
then edits and outputs the print data as necessary based upon
the print settings. If there is no need to manipulate the print
data, then the acquired print data is output as is. The output of
the layout filter 523 is supplied to the rendering filter 525. The
rendering filter 525 executes rendering processing of each
page in the supplied XPS-formatted print data, makes a con-
version to a print command upon executing the required
image processing and outputs the print command. The print
command that has been output by the rendering filter 525 is
supplied to the printing device 120, which proceeds to
execute a printing operation.

<Print Settings Dialog>

A print settings dialog which the user interface module 411
provides to the user will be described next. FIG. 6 is a diagram
illustrating an example of a print settings dialog displayed
when the print settings in this embodiment are made by the
user. The print settings dialog displays settings-related con-
tent and accepts from the user an instruction and input for
changing the settings content. Illustrated as an example in
FIG. 6 is a setting relating to extension-amount information in
borderless printing, which is information that cannot be
acquired with an OS-provided API. Not illustrated here are
setting items relating to ordinary information that can be
handled by a printer, which information is obtained by the
above-mentioned DeviceCapabilities function.

FIG. 6 is an example of display of a borderless settings
dialog 601 for configuring printing related to borderless print-
ing. The borderless settings dialog 601 is composed of dis-
play areas 611, 613, 615, 617, 621 and 623. In borderless
setting section 621, the borderless print feature can be
enabled by marking the check box. In a borderless extension
amount section 623, the amount of page extension of a print
document can be designated when the borderless print feature
is in effect since it is required in such case that the page of the
print document be printed to a size larger than the size of the
paper. Here a four-stage adjustment is possible. From the
right, the four stages are large, medium, small and no exten-
sion.

By clicking an OK button 611 after each item is selected,
the user can close the borderless settings dialog 601 and cause
the set print settings to be reflected in printing. If a CANCEL
button 613 is clicked, the borderless settings dialog 601
closes and the content of the selected setting items is dis-
carded and is not reflected in printing. If a DEFAULTS button
615 is clicked, the set values of each of the setting items in the
borderless settings dialog 601 are restored to the normal
values. If a HELP button 617 is clicked, guidance related to
the setting items in the borderless settings dialog 601 can be
displayed in a separate window.

20

30

40

45

8

Thus, the user is capable of configuring printing relating to
printer-specific capabilities, and not just ordinary informa-
tion such as paper size, via a print settings dialog which the
user interface module 411 provides to the user.

<Acquisition of Unique Data Using Named Shared
Memory and ExtEscape Function>

Described next will be the flow of processing whereby the
application program 201 acquires vendor-specific informa-
tion from the XPS printer driver using the ExtEscape func-
tion. The named shared memory will be described first. A
named shared memory is one type of file mapping object and
is one named object provided by the OS. A feature of a named
shared memory is that it is accessible from multiple pro-
cesses. The multiple processes mentioned here include a
32-bit process and a 64-bit process. This means that the
named shared memory is accessible from both the 32-bit and
64-bit processes. For example, even in a case where the pro-
cess of an application program that calls the ExtEscape func-
tion and a process in which the printer driver called from the
print support feature of the OS operates do not coincide in
terms of the number ofbits, access becomes possible from the
process of the application by using the named shared
memory.

FIG. 4 is an example of a schematic view illustrating the
operation of the ExtHEscape function in an XPS printer driver
in this embodiment. The application program 201 creates a
named shared memory 401 before calling the ExtEscape
function and stores the type of vendor-specific information
desired to be acquired (e.g., a setting item) (S401). Next, in
order to acquire vendor-specific information, the application
program 201 calls the ExtHEscape function designating the
vendor-specific Escape code and the name of the named
shared memory 401 that has been created (S402). The print
support feature 301 first calls the DrvDocumentEvent func-
tion of the user interface module 331 ofthe XPS printer driver
(S403). The user interface module 331 of the XPS printer
driver discriminates the vendor-specific Escape code and
generates vendor-specific information if the event of the
ExtEscape function is indicated. The user interface module
331 of the XPS printer driver stores the generated vendor-
specific information in the named shared memory 401 based
upon the name information of the named shared memory 401
passed as the argument (S404). After the processing by the
user interface module 331 of the XPS printer driver ends
(S405), the print support feature 301 calls the DrvEscape
function of the MXDC 341 (S406). As mentioned above, the
MXDC 341 has been provided by Microsoft and therefore the
vendor-specific Escape code is processed as an unknown
Escape code. Accordingly, since return data of the vendor-
specific ExtEscape function cannot be generated, the appli-
cation program 201 cannot acquire vendor-specific informa-
tion (S407 and S408). Since vendor-specific information
cannot be acquired by the processing of the ExtEscape func-
tion, as mentioned above, the application program 201
ignores the result of processing of the ExtEscape function and
acquires vendor-specific information from the named shared
memory 401 (S409). Finally, the application program 201
deletes the named shared memory 401.

FIG. 7 is a timing chart of processing whereby an applica-
tion program acquires vendor-specific information using a
named shared memory and the ExtEscape function. The
application program 201 first decides the name of a named
shared memory and creates the named shared memory to
which the decided name has been assigned (701). Since there
is the possibility that a plurality of items of vendor-specific
information will be acquired simultaneously within the pro-
cesses of the application program 201, the name of the named

US 9,298,522 B2

9

shared memory can be decided utilizing a process ID and
thread ID. The application program 201 then executes pro-
cessing for calling the ExtEscape function (702). First, the
application program 201 stores the type of vendor-specific
information desired to be acquired in the named shared
memory. The application program 201 then designates the
name information of the named shared memory in the argu-
ment and calls the ExtEscape function of the print support
feature 301 of the OS by the vendor-specific Escape code. The
print support feature 301 of the OS interprets the ExtEscape
function invocation (703) and calls the DrvDocumentEvent
function of the user interface module 411 (705).

The user interface module 411 for which the DrvDocu-
mentEvent function has been called executes processing for
storing the vendor-specific information in the named shared
memory (707). In a case where the event of which notification
has been given to the DrvDocumentEvent function is the
Escape event and, moreover, the vendor-specific Escape code
has been designated, these being the conditions for process-
ing, the named shared memory is accessed based upon the
name information of the named shared memory passed as the
argument of the ExtEscape function. The user interface mod-
ule 411 reads out the type of vendor-specific information that
has been stored in the named shared memory, generates ven-
dor-specific information conforming to this type and stores
this information in the named shared memory. Further, the
user interface module 411 stores generation-result informa-
tion, which indicates whether generation of the vendor-spe-
cific information has succeeded or failed, in the named shared
memory. The user interface module 411 terminates process-
ing of the DrvDocumentEvent function and notifies the print
support feature 301 of the OS of the end of processing (709).

The print support feature 301 of the OS calls the DrvEscape
function of the MSDC 421, which is the rendering module,
after the processing of the DrvDocumentEvent function in the
user interface module 411 ends (711). In a case where the
vendor-specific Escape code has been designated, the MSDC
421 for which the DrvEscape function has been called cannot
interpret the content of this code (713). Accordingly, the
DrvEscape function cannot execute processing and returns a
failure result to the print support feature 301 of the OS (715).
From the processing result indicative of failure of the DrvEs-
cape function of the MSDC 421, the print support feature 301
of the OS returns a result, indicative of failure of processing
by the ExtEscape function, to the application program 201 as
a return value (717).

Following the end of processing by the ExtEscape func-
tion, the application program 201 acquires vendor-specific
information through the following procedure (719): First,
since the return value of the ExtEscape function always
means processing failure, the application program 201
ignores this return value. The application program 201 then
refers to the generation-result information that has been
stored in the application program 201. If the user interface
module 411 succeeds in generating the vendor-specific infor-
mation, the application program 201 acquires the vendor-
specific information that has been stored the named shared
memory. Finally, the application program 201 deletes the
named shared memory (721).

Thus, by using the named shared memory and the OS-
provided ExtEscape function, the application program 201 is
capable of acquiring vendor-specific information from the
XPS printer driver. Accordingly, even in an environment in
which a 32-bit application program operates using the 64-bit
version of Windows, a printer driver that operates in a 64-bit

10

15

20

25

30

35

40

45

50

55

60

65

10

process different from the process of the application program
can provide vendor-specific information by using this
method.

It should be noted that in a case where multiple types of
vendor-specific information are acquired, it goes without say-
ing that it will suffice if the application program 201 repeats
the processing steps 702 and 719 a plurality of times as
necessary after processing step 701 and finally executes the
processing step 721.

It should be noted that although the name information of
the named shared memory is passed as the argument of the
ExtEscape function, information for generating the name
information may just as well be passed as the argument. For
example, the name of the named shared memory can be
generated using a process ID and thread 1D, as mentioned
above. Accordingly, the process ID and thread 1D may be
passed to the argument of the ExtEscape function. In this
case, the user interface module 411 generates the name infor-
mation of the named shared memory using the process ID and
thread ID passed as the argument and accesses the named
shared memory using this name information.

<Structure of Data Stored in Named Shared Memory>

The structure of the data stored in a named shared memory
will be described next. FIG. 8 is a diagram illustrating an
example of the structure of data stored in a named shared
memory in this embodiment. A named shared memory 801 is
composed of members 811 to 851.

The member 811 indicates the size of the named shared
memory 801. A signature 813 is any value that the user
assigns to the named shared memory. Generally an integral
value or a short character string is used. The signature 813
may be made a value capable of being identified commonly
by both the application program and printer driver. An input
data offset 815 is an offset indicating the position of offset
data and is represented by the number of bytes, etc., from the
beginning of the named shared memory 801. Input data size
817 is the size of the input data. Here the size of input data
831, described later, is represented by the number of bytes,
etc. An output data offset 819 is an offset indicating the
position of output data and is represented by the number of
bytes, etc., from the beginning of the named shared memory
801. Output data size 821 is the size of the output data. Here
the size of output data 841, described later, is represented by
the number of bytes, etc.

Generation-result information 823 contains information
indicting whether the user interface module 411 succeeded in
generating the vendor-specific information. The application
program 201 refers to this information and discriminates the
vendor-specific information generation. The input data 831
contains data which the application program 201 delivers to
the printer driver. The input data 831 may request only a
single item in the vendor-specific information, or data that
subdivides the content of a setting item and requests a plural-
ity of setting items may be adopted as the input data. For
example, in the case of a plurality of setting items, data that
collectively requests a list of extension-amount setting values
in borderless printing as the type of vendor-specific informa-
tion may be adopted as the input data.

The output data 841 contains vendor-specific information
that has been generated by the 411. For example, the output
data 841 contains a list of extension-amount setting values in
borderless printing conforming to the print settings informa-
tion. Here the content of member 841 may be subdivided in
accordance with the input content of the input data 831 and a
plurality of setting items may be adopted as output data. For
example, the output data 841 may contain a list of extension-
amount setting values in borderless printing conforming to

US 9,298,522 B2

11

the feature as well as the number of elements included in the
list. It should be noted that the data included in the input data
831 and output data 841 is not limited to the data mentioned
and may be any data so long as it is data that is to be commu-
nicated between the application program and the user inter-
face module. The member 851 is an unused area of the named
shared memory 801.

<Processing for Acquiring Vendor-Specific Information of
Application Program>

Next, processing by which the application program
acquires vendor-specific information will be described.

FIG. 9 is an example of a flowchart of processing by which
anapplication program acquires vendor-specific information.
Processing starts at step S901. Next, the application program
decides the name of a named shared memory and creates the
named shared memory (step S903). Next, at step S905, the
application program stores the type of vendor-specific infor-
mation to be acquired in the named shared memory. The
application program designates the name information of the
named shared memory as an argument and calls the ExtHs-
cape function by the vendor-specific Escape code. Then, at
step S907, the application program ignores the return data of
the ExtEscape function and refers to the generation-result
information 823 that has been stored in the named shared
memory. Next, at step S909, the application program deter-
mines from the generation-result information 823 whether
generation of the vendor-specific information succeeded.
Control proceeds to step S911 if generation succeeded and to
step S913 if generation failed. At step S911, the application
program acquires the vendor-specific information that has
been stored in the named shared memory 801. At step S913,
it is determined whether all of the vendor-specific informa-
tion desired to be acquired by the application program has
been acquired. Control proceeds to step S915 if all of the
information has been acquired and to step S905 if it has not.
At step S915, the application program deletes the named
shared memory created at step S903 and finally terminates
processing at step S916.

<Processing of DrvDocumentEvent Function>

Described next will be processing of the DrvDocument-
Event function of the user interface module. FIG. 10 is an
example of a flowchart of processing of the DrvDocument-
Event function.

Processing starts at step S1001. Next, at step S1003, the
user interface module determines whether the type of event of
which it has been notified is the Escape event. Control pro-
ceeds to step S1005 if the event is the Escape event and to step
S1011 if the event is not the Escape event. At step S1005, the
user interface module determines whether the Escape code
passed as the Escape event is the vendor-specific Escape
code. Control proceeds to step S1007 if the code is the ven-
dor-specific Escape code and to step S1109 if it is not. At step
S1007, the user interface module acquires the name informa-
tion of the named shared memory passed from the ExtEscape
function by the argument and refers to the type of vendor-
specific information from the named shared memory. The
user interface module generates the vendor-specific informa-
tion in accordance with the type and stores the information in
the named shared memory together with the generation-result
information indicating whether generation of the vendor-spe-
cific information succeeded or failed. At step S1011, the user
interface module executes processing in accordance with
various events other than the Escape event of which notifica-
tion has been given. Control then proceeds to step S1009. The
various events at step S1011 and the content processing con-
forming to the events have no relation to the present invention

10

15

20

25

30

35

40

45

50

55

60

65

12

and need not be described in detail. The user interface module
finally terminates processing at step S1009.

<Example of Configuration of Printing System>

A printing system to which this embodiment is applicable
will be described next with reference to FIG. 1. FIG. 1 is an
example of a block diagram illustrating the configuration of a
printing system in this embodiment. Broadly speaking, the
printing system in this embodiment comprises a printing
device 120 and a data processing apparatus 100. The data
processing apparatus 100 comprises blocks 101 to 114.
Although the data processing apparatus is assumed to be a
personal computer or the like, it may be any type of equip-
ment so long as this embodiment can be implemented. The
equipment should have an OS environment in which an appli-
cation program and printer driver are capable of operating.

A CRT display device 101 displays a print settings dialog
provided by the user interface module of the printer driver. A
controller (CRTC) 102 is for controlling the display device.
Block 103 is a data input unit such as unit such as a keyboard,
block 104 a keyboard controller, block 105 a coordinate input
unit such as a pointing device, block 106 a pointing-device
controller, block 107 a CPU for controlling the overall appa-
ratus, block 108 a ROM storing a boot program, etc., and
block 109 aRAM utilized as a storage location for application
programs and a printer driver program relating to the flow-
chart of this embodiment, and as a work area. Block 110 is a
hard-disk drive storing the OS, application programs, the
printer driver program relating to the flowchart of this
embodiment, font data and data files, etc. Block 111 is a
hard-disk controller. A spool file is also stored in the hard-disk
drive 110 temporarily. Block 112 is a floppy (registered trade-
mark) disk drive serving as a device for driving a portable
storage medium, and block 113 is a floppy (registered trade-
mark) disk controller.

Also provided are an interface 130 and an interface con-
troller 114. The data processing apparatus 100 is connected to
the printing device 120, such as an ink-jet printer, via an
interface cable. A system bus 116 connects the blocks men-
tioned above. When power is introduced to the apparatus, the
CPU 107 is started up by the boot program stored in the ROM
108, loads the OS from the hard-disk drive 110 and then waits
for the operator to perform an operation. In a case where a
print command or a command to change the print settings of
the printer driver is received from the operator via the key-
board 103 or pointing device 105, or in a case where the
system has been configured to start up automatically, the
printer driver program that has been stored on the hard-disk
drive 110 is loaded to the RAM 109 and executed by the CPU
107.

In the above embodiment, an example in which both input
data and output data are stored using a single named shared
memory is illustrated. However, it goes without saying that it
may be so arranged that the data may be partitioned and stored
in a plurality of named shared memories.

In the above embodiment, an example in which a named
shared memory is used in order to store input and output data
is illustrated. However, it goes without saying that another
named object may be used instead. An example of a method
that can be mentioned stores input and output data utilizing a
file instead of a named shared memory and communicates the
name of the file from the application program to the printer
driver via an OS-provided AP

Further, in the above embodiment, an example in which the
name of the named shared memory is communicated from the
application program to the printer driver via an OS-provided
APl is illustrated. However, it goes without saying that infor-
mation for accessing the named shared memory may be deliv-

US 9,298,522 B2

13

ered and not the name information. For example, it may be so
arranged that notification is given of information for gener-
ating name information utilized in order to access the named
shared memory. Specifically, if name information is gener-
ated from a process 1D and thread ID, then a method available
is to notify of the process ID and thread ID upon making the
name-information generating rule agree between the applica-
tion program and printer driver.

Further, if, in a case where another named object is used
instead of a named shared memory, the handle of the named
object can be shared by multiple processes in common, then
it will suffice if the handle is delivered as information for
accessing the named object.

In the above embodiment, an example in which the ExtEs-
cape function is used as the OS-provided API is illustrated.
However, the invention is not limited to this arrangement and
it goes without saying that it will suffice if the API is one
called by a module, which constitutes the printer driver, via
the print support feature of the OS. For example, it goes
without saying that areas for acquiring name information of a
named shared memory and vendor-specific information may
be added to a private area, etc., of the DEVMODE structure
that stores the print settings information, and a Document-
Properties function or DeviceCapabilities function may be
used.

Effects of this Embodiment

By adopting the arrangement described above, a printer
driver stores vendor-specific information in a named object
and an application program refers to the information that has
been stored in the named object by the printer driver, whereby
the application program is capable of executing processing
without a limitation being imposed by the specifications of an
OS-provided API. Further, since the printer driver operates
only when the application program calls the API, it is unnec-
essary for another program for providing vendor-specific
information to be made to wait as a service or separate pro-
cess.

Furthermore, since the application program utilizes a
named shared memory and an ExtEscape function, it is pos-
sible for both an event processing unit of a user interface
module in a print module and an Escape processing unit of a
rendering module to store vendor-specific information in the
named shared memory. Since processing by the user interface
module becomes possible, the vendor-specific information
can be returned to the application program even by an XPS
printer driver.

Furthermore, by using the named object, vendor-specific
information can be returned to the application program even
in a case where an application program and printer driver
having different operating conditions operate as separate pro-
cesses. Of course, application is possible even in a case where
an application program and printer driver operate as identical
processes.

Furthermore, a printer driver bundled with the 64-bit ver-
sion of Windows is capable of returning vendor-specific
information to a 32-bit application program.

Thus, a data communication method which does not use a
vendor-specific API and is not dependent upon a rendering
module is possible.

Other Embodiments

Aspects of the present invention can also be realized by a
computer of a system or apparatus (or devices such as a CPU
or MPU) that reads out and executes a program recorded on a

10

15

20

25

30

35

40

45

50

55

o

5

14

memory device to perform the functions of the above-de-
scribed embodiment(s), and by a method, the steps of which
are performed by a computer of a system or apparatus by, for
example, reading out and executing a program recorded on a
memory device to perform the functions of the above-de-
scribed embodiment(s). For this purpose, the program is pro-
vided to the computer for example via a network or from a
recording medium of various types serving as the memory
device (e.g., computer-readable medium).

While the present invention has been described with refer-
ence to exemplary embodiments, it is to be understood that
the invention is not limited to the disclosed exemplary
embodiments. The scope of the following claims is to be
accorded the broadest interpretation so as to encompass all
such modifications and equivalent structures and functions.

This application claims the benefit of Japanese Patent
Application No. 2008-316274, filed Dec. 11, 2008, which is
hereby incorporated by reference herein in its entirety.

What is claimed is:

1. An information processing apparatus that executes

an application that runs with a first bit number, and

a printer driver that runs with a second bit number,

wherein the application comprises:

an allocation unit configured to allocate a named shared
memory that can be accessed by both the application and
the printer driver; and

a notification unit configured to notify the printer driver of
a name of the named shared memory;

wherein the printer driver comprises:

a storing unit configured to store information about a print
setting in the named shared memory based on the name
of the named shared memory;

wherein the application further comprises:

an acquisition unit configured to acquire the information
from the named shared memory, and

wherein the name of the named shared memory is decided
by utilizing a process ID and thread ID.

2. The information processing apparatus according to

claim 1, wherein

in a case where the application calls a function, the storing
unit stores the information in the named shared memory,
and

in a case where the application receives a return of the
function, the acquisition unit acquires the information
stored by the storing unit from the named shared
memory.

3. The information processing apparatus according to
claim 1, wherein the storing unit stores, in the named shared
memory, the information that cannot be acquired by an appli-
cation programming interface provided by an operating sys-
tem.

4. The information processing apparatus according to
claim 1, wherein

the storing unit stores, in the named shared memory, the
information about the print setting and generation-result
information indicating whether generation of the infor-
mation has succeeded or failed, and

in a case where the generation-result information stored by
the storing unit indicates that the generation of the infor-
mation has succeeded, the acquisition unit acquires,
from the named shared memory, the information about
the print setting stored by the storing unit.

5. The information processing apparatus according to
claim 3, wherein the information that cannot be acquired by
the application programming interface provided by the oper-
ating system is extension-amount in borderless printing.

US 9,298,522 B2

15

6. The information processing apparatus according to
claim 1, wherein in a case where the printer driver is called by
a specific function and a specific code is designated, the
storing unit stores the information about the print setting in
the named shared memory.

7. An information processing apparatus that executes

an application that runs with a first bit number,

wherein the application comprises:

an allocation unit configured to allocate a named shared
memory that can be accessed by both the application and
a printer driver that runs with a second bit number;

a notification unit configured to notify the printer driver of
a name of the named shared memory; and

an acquisition unit configured to acquire information about
a print setting stored by the printer driver from the
named shared memory,

wherein the name of the named shared memory is decided
by utilizing a process ID and thread ID.

8. An information processing apparatus that executes

a printer driver that runs with a second bit number,

wherein the printer driver comprises:

a receiving unit configured to receive, from an application
that runs with a first bit number, a name of a named
shared memory that can be accessed by both the appli-
cation and the printer driver, and is allocated by the
application; and

a storing unit configured to store, in a named shared
memory, information about a print setting that is
acquired by the application based on the name of the
named shared memory,

wherein the name of the named shared memory is decided
by utilizing a process ID and thread ID.

9. An information processing method comprising:

executing an application that runs with a first bit number,
and a printer driver that runs with a second bit number;

allocating a named shared memory that can be accessed by
both the application and the printer driver;

notifying the printer driver of a name of the named shared
memory;

storing information about a print setting in the named
shared memory based on the name of the named shared
memory; and

acquiring the information from the named shared memory,

wherein the storing is executed by the printer driver, and

wherein the allocating, notifying, and acquiring are
executed by the application, and

wherein the name of the named shared memory is decided
by utilizing a process ID and thread ID.

10. The information processing method according to claim

9, wherein

in a case where the application calls a function, the storing
stores the information in the named shared memory, and

in a case where the application receives a return of the
function, the acquiring acquires the information stored
in the storing from the named shared memory.

11. The information processing method according to claim

9, wherein the storing stores, in the named shared memory,
the information that cannot be acquired by an application
programming interface provided by an operating system.

12. The information processing method according to claim
9, wherein

the storing stores, in the named shared memory, the infor-
mation about the print setting and generation-result
information indicating whether generation of the infor-
mation has succeeded or failed, and

in a case where the generation-result information stored by
the storing indicates that the generation of the informa-

20

25

30

35

40

45

50

55

65

16

tion has succeeded, the acquiring acquires, from the
named shared memory, the information about the print
setting stored by the storing.

13. The information processing method according to claim
11, wherein the information that cannot be acquired by the
application programming interface provided by the operating
system is extension-amount in borderless printing.

14. The information processing method according to claim
9, wherein in a case where the printer driver is called by a
specific function and a specific code is designated, the infor-
mation is stored in the named shared memory in the storing.

15. The information processing method according to claim
9, wherein the printer driver displays a print setting dialog for
performing a print setting that cannot be acquired by an
application programming interface provided by an operating
system.

16. An information processing method comprising:

executing an application that runs with a first bit number;

allocating a named shared memory that can be accessed by
both the application and a printer driver that runs with a
second bit number;

notifying the printer driver of a name of the named shared

memory; and

acquiring information about a print setting stored by the

printer driver from the named shared memory,

wherein the allocating, notifying, and acquiring are

executed by the application, and

wherein the name of the named shared memory is decided

by utilizing a process ID and thread ID.

17. An information processing method comprising:

executing a printer driver that runs with a second bit num-

ber,

receiving, from an application that runs with a first bit

number, a name of a named shared memory that can be
accessed by both the application and the printer driver,
and is allocated by the application; and

storing, in a named shared memory, information about a

print setting that is acquired by the application based on
the name of the named shared memory,

wherein the receiving and storing are executed by the

printer driver, and

wherein the name of the named shared memory is decided

by utilizing a process ID and thread ID.

18. A non-transitory computer-readable medium storing
instructions which, when executed by a computer, perform an
information processing method comprising:

executing an application that runs with a first bit number,

and a printer driver that runs with a second bit number;
allocating a named shared memory that can be accessed by
both the application and the printer driver;

notifying the printer driver of a name of the named shared

memory;

storing information about a print setting in the named

shared memory based on the name of the named shared
memory; and

acquiring the information stored in the storing from the

named shared memory,

wherein the storing is executed by the printer driver, and

wherein the allocating, notifying, and acquiring are

executed by the application, and

wherein the name of the named shared memory is decided

by utilizing a process ID and thread ID.

19. The non-transitory computer-readable medium accord-
ing to claim 18, wherein, in the method,

in a case where the application calls a function, the storing

stores the information in the named shared memory, and

US 9,298,522 B2

17

in a case where the application receives a return of the
function, the acquiring acquires the information stored
in the storing from the named shared memory.

20. The non-transitory computer-readable medium accord-
ing to claim 18, wherein the storing stores, in the named
shared memory, the information that cannot be acquired by an
application programming interface provided by an operating
system.

21. The non-transitory computer-readable medium accord-
ing to claim 18, wherein

the storing stores, in the named shared memory, the infor-

mation about the print setting and generation-result
information indicating whether generation of the infor-
mation has succeeded or failed, and

in a case where the generation-result information stored by

the storing indicates that the generation of the informa-
tion has succeeded, the acquiring acquires, from the
named shared memory, the information about the print
setting stored in the storing.

22. The non-transitory computer-readable medium accord-
ing to claim 20, wherein the information that cannot be
acquired by the application programming interface provided
by the operating system is extension amount in borderless
printing.

23. The non-transitory computer-readable medium accord-
ing to claim 18, wherein in a case where the printer driver is
called by a specific function and a specific code is designated,
the information about the print setting is stored in the named
shared memory in the storing.

24. A non-transitory computer-readable medium storing
instructions which, when executed by a computer, perform an
information processing method comprising:

10

15

20

25

18

executing an application that runs with a first bit number;

allocating a named shared memory that can be accessed by
both the application and a printer driver that runs with a
second bit number;

notifying the printer driver of a name of the named shared

memory; and

acquiring information about a print setting stored by the

printer driver from the named shared memory,

wherein the allocating, notifying, and acquiring is

executed by the application, and

wherein the name of the named shared memory is decided

by utilizing a process ID and thread ID.

25. A non-transitory computer-readable medium storing
instructions which, when executed by a computer, perform an
information processing method comprising:

executing a printer driver that runs with a second bit num-

ber,

receiving, from an application that runs with a first bit

number, a name of a named shared memory that can be
accessed by both the application and the printer driver,
and is allocated by the application; and

storing, in a named shared memory, information about a

print setting that is acquired by the application based on
the name of the named shared memory

wherein the receiving and storing is executed by the printer

driver, and

wherein the name of the named shared memory is decided

by utilizing a process ID and thread ID.

#* #* #* #* #*

